

ROBOTICS

Product specification

IRB 760

Trace back information: Workspace 24D version a4 Checked in 2024-12-09 Skribenta version 5.6.018

Product specification

IRB 760-450/3.2 IRB 760-445/3.2

OmniCore

Document ID: 3HAC087210-001

Revision: D

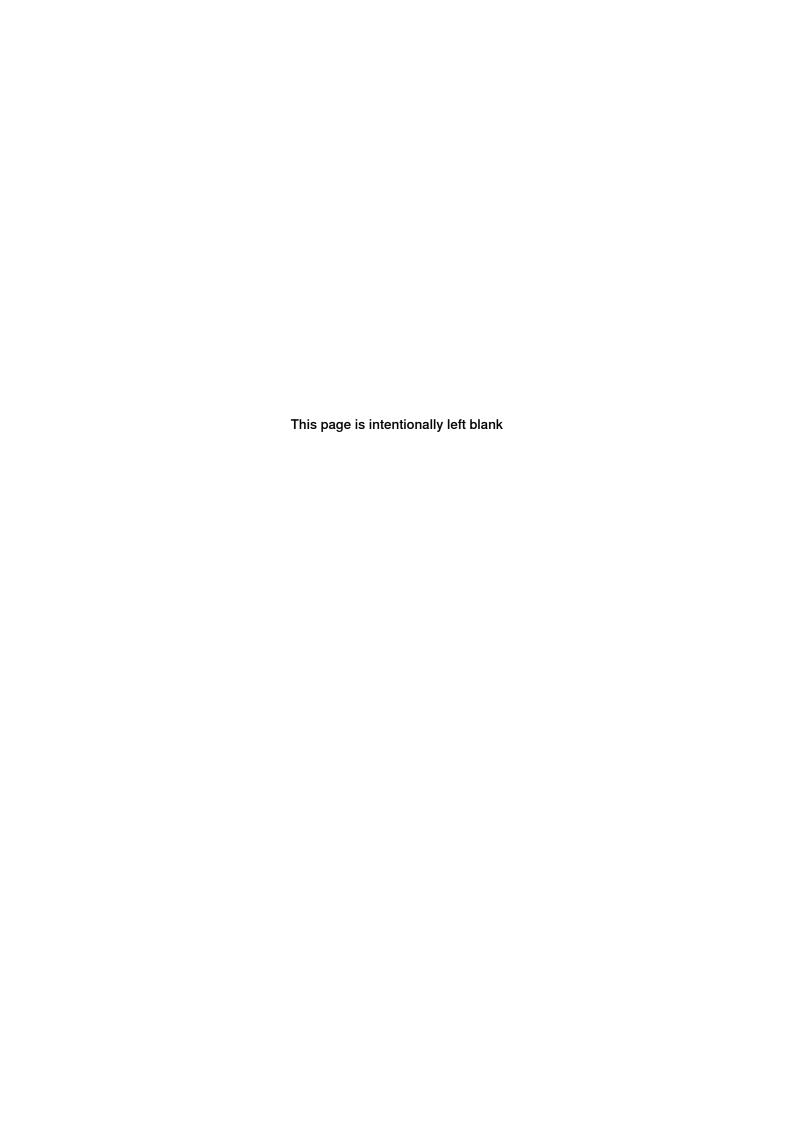
The information in this manual is subject to change without notice and should not be construed as a commitment by ABB. ABB assumes no responsibility for any errors that may appear in this manual.

Except as may be expressly stated anywhere in this manual, nothing herein shall be construed as any kind of guarantee or warranty by ABB for losses, damage to persons or property, fitness for a specific purpose or the like.

In no event shall ABB be liable for incidental or consequential damages arising from use of this manual and products described herein.

This manual and parts thereof must not be reproduced or copied without ABB's written permission.

Keep for future reference.


Additional copies of this manual may be obtained from ABB.

Original instructions.

© Copyright 2024 ABB. All rights reserved. Specifications subject to change without notice.

Table of contents

	Over	erview			
1	Desc	cription			
	1.1	Structure	9		
		1.1.1 Introduction	9		
		1.1.2 Technical data	11		
	1.2	Safety standards	14		
		1.2.1 Applicable standards	14		
	1.3	Installation	15		
		1.3.1 Introduction	15		
		1.3.2 Technical data	16		
		1.3.3 Mounting the manipulator	20		
	1.4	Calibration	26		
		1.4.1 Calibration methods	26		
		1.4.2 Fine calibration	27		
	1.5	Load diagrams	28		
	1.0	1.5.1 Introduction to load diagrams	28		
		1.5.2 Load diagrams	29		
		1.5.3 Maximum load and moment of inertia	31		
		1.5.4 Maximum TCP acceleration	32		
	1.6	Mounting of equipment	33		
	1.0	1.6.1 Introduction	33		
	1.7	Robot motion	38		
	1.7	1.7.1 Introduction	38		
		1.7.2 Performance according to ISO 9283	41		
		1.7.3 Velocity	42		
		1.7.4 Robot stopping distances and times	43		
	1.8	Customer connections	44		
	1.0	1.8.1 Introduction	44		
	1.9	Maintenance and troubleshooting	46		
	1.9		46		
		1.9.1 Introduction	40		
2	Spec	ifications of variants and options	47		
	2.1	Introduction to variants and options	47		
	2.2	Manipulator	48		
	2.3	Floor cables	51		
	2.4	Application manipulator	52		
	2.5	Connector kits manipulator	53		
		2.5.1 Base - Connector kits	54		
		2.5.2 Axis 6 - Connector kits	55		
	2.6	Application floor cables	56		
	2.7	Warranty	58		
	-	,			
Ind	dov		61		

Overview

About this product specification

This product specification describes the performance of the manipulator or a complete family of manipulators in terms of:

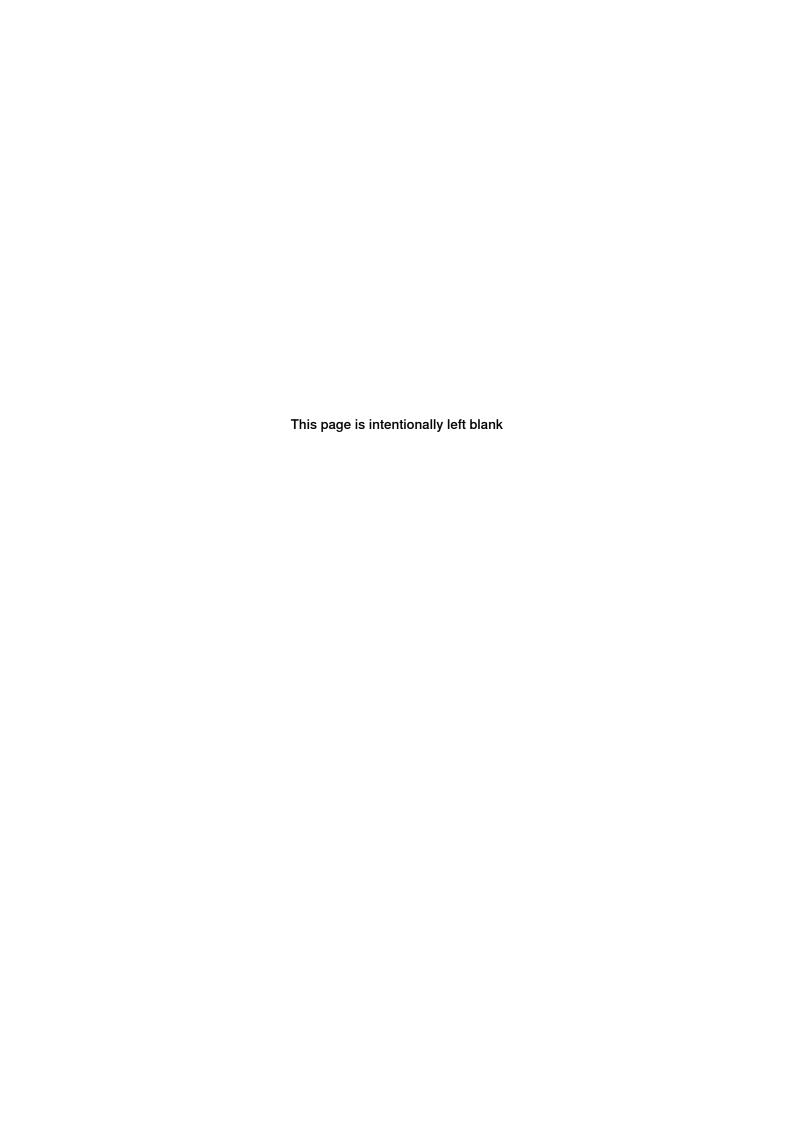
- · The structure and dimensional prints
- · The fulfilment of standards, safety, and operating equipment
- The load diagrams, mounting or extra equipment, the motion, and the robot reach
- · The specification of available variants and options

The specification covers the manipulator using the OmniCore controller.

Usage

Product specifications are used to find data and performance about the product, for example to decide which product to buy. How to handle the product is described in the product manual.

The specification is intended for:


- · Product managers and product personnel
- · Sales and marketing personnel
- · Order and customer service personnel
- · Integrators and customers

References

Reference	Document ID
Product specification - OmniCore V line	3HAC074671-001
Product manual - IRB 760	3HAC039838-001
Product specification - Robot stopping distances according to ISO 10218-	3HAC048645-001

Revisions

Revision	Description
Α	First edition.
В	Published in release 24A. The following updates are done in this revision: Added DressPack options for CC-Link.
С	Published in release 24B. The following updates are done in this revision: • Added DressPack options for EtherCat.
D	Published in release 24D. The following updates are done in this revision: Updated the section <i>Technical data on page 16</i>.
	 Corrected the description of the connector kit options for DressPack.

1.1.1 Introduction

1 Description

1.1 Structure

1.1.1 Introduction

Robot family

IRB 760 is ABB Robotics dedicated full layer palletizer, 4-axis robot, designed with a focus on its high production capacity, short cycle time at a high payload, long reach together with the very high uptime, which is significant for ABB robots.

It is available in two variants with a handling capacity of 450 kg and 445 kg and a reach of 3.18 m. The IRB 760-445/3.2 variant has a modified morphology of the tilt housing.

Customer connections (option) as power, signals, Bus signals and twin air are integrated in the robot, from the robot base to connections at the robot tool flange.

Operating system

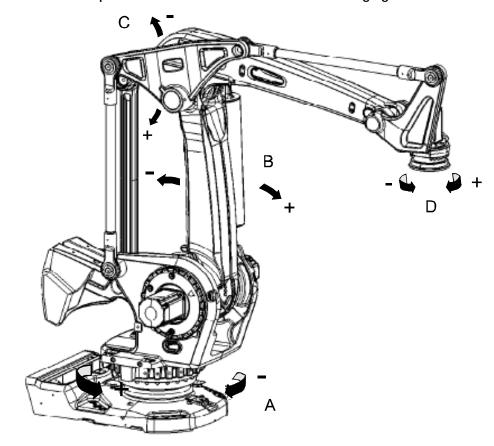
The robot is equipped with the OmniCore controller and robot control software, RobotWare. RobotWare supports every aspect of the robot system, such as motion control, development and execution of application programs, communication etc. See *Product specification - OmniCore V line*.

The IRB 760 manipulator can be connected to the following robot controllers:

- OmniCore V250XT
- OmniCore V400XT

Safety

Safety standards valid for complete robot, manipulator and controller.


Additional functionality

For additional functionality, the robot can be equipped with optional software for application support - for example gluing and welding, communication features - network communication - and advanced functions such as multitasking, sensor control etc. For a complete description on optional software, see *Product specification - OmniCore V line*.

1.1.1 Introduction Continued

Manipulator axes

The IRB 760 manipulator has 4 axes as shown in the following figure.

xx1000001136

Pos	Description
Α	Axis 1
В	Axis 2
С	Axis 3
D	Axis 6

1.1.2 Technical data

Available variants

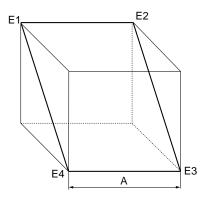
The IRB 760 is available in two variants, for floor mounting (no tilting around X or Y axis).

Robot variant	Handling capacity	Reach (m)
IRB 760-450/3.2	450 kg	3.18 m
IRB 760-445/3.2	445 kg	3.18 m

Manipulator weight

Robot	Weight (kg)
IRB 760	2,300 kg

Other technical data


Data	Description	Note
	The sound pressure level outside the working space	< 70 dB (A) Leq (acc. to Machinery directive 2006/42/EG).

Power consumption at max load

Type of movement	IRB 760-450/3.2 IRB 760-445/3.2
ISO cube maximum velocity	2.1 kW
General palletizing movements	2.1 kW

Robot in calibration position	IRB 760-450/3.2 IRB 760-445/3.2
Brakes engaged	0.24 kW
Brakes disengaged	0.84 kW

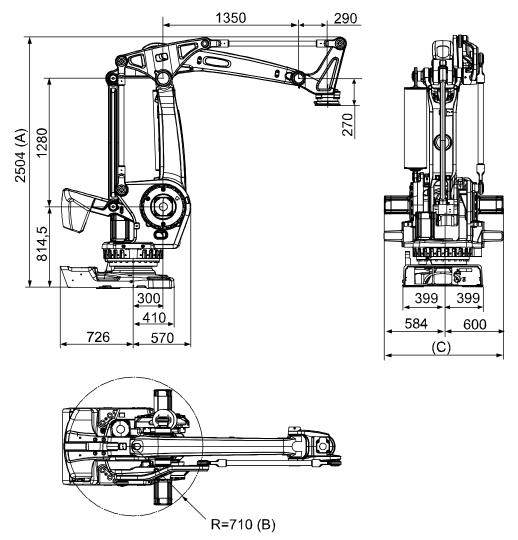
The path E1-E2-E3-E4 in the ISO cube is show in the following figure.

xx1000000101

	Description
Α	1,000 mm

1.1.2 Technical data

Continued

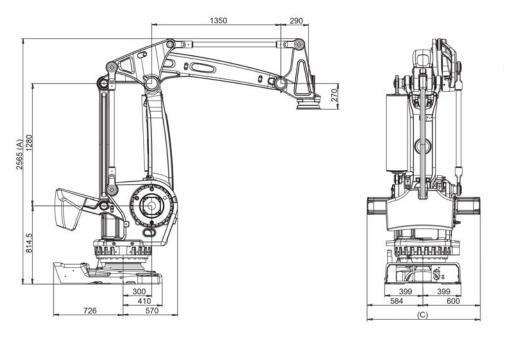

Power factor (cos φ)

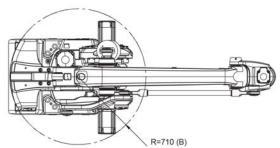
The power factor is above 0.95 at a steady state power consumption higher than 2.0 kW, when the IRB 760 is connected to the OmniCore V line.

Dimensions IRB 760

The following figure shows the rear, side and top view of the IRB 760 manipulator (dimensions in mm).

IRB 760-450/3.2




xx1000001137

	Description
Α	2966 mm max working range
В	Radius for axis 3 motor 750 mm radius for fork lift pocket (option)
С	Max forklift width 1195 mm

1.1.2 Technical data Continued

IRB 760-445/3.2

xx2000000270

	Description
Α	3027 mm max working range
В	Radius for axis 3 motor 750 mm radius for fork lift pocket (option)
С	Max forklift width 1195 mm

1.2.1 Applicable standards

1.2 Safety standards

1.2.1 Applicable standards

General

The product is compliant with ISO 10218-1:2011, *Robots for industrial environments - Safety requirements - Part 1 Robots*, and applicable parts in the normative references, as referred to from ISO 10218-1:2011. In case of deviation from ISO 10218-1:2011, these are listed in the declaration of incorporation. The declaration of incorporation is part of the delivery.

Robot standards

Standard	Description
ISO 9283	Manipulating industrial robots – Performance criteria and related test methods
ISO 9787	Robots and robotic devices – Coordinate systems and motion nomenclatures
ISO 9946	Manipulating industrial robots – Presentation of characteristics

Other standards used in design

Standard	Description
IEC 60204-1	Safety of machinery - Electrical equipment of machines - Part 1: General requirements, normative reference from ISO 10218-1
IEC 61000-6-2	Electromagnetic compatibility (EMC) – Part 6-2: Generic standards – Immunity standard for industrial environments
IEC 61000-6-4	Electromagnetic compatibility (EMC) – Part 6-4: Generic standards – Emission standard for industrial environments
ISO 13849-1:2006	Safety of machinery - Safety related parts of control systems - Part 1: General principles for design, normative reference from ISO 10218-1
UL 1740 (option)	Standards For Safety - Robots and Robotic Equipment
CSA Z434 (option)	Industrial robots and robot Systems - General safety requirements
	Valid for USA and Canada.

1.3.1 Introduction

1.3 Installation

1.3.1 Introduction

General

IRB 760 is designed for floor mounting (no tilting around X or Y axis), end effector with max. weight of 450 kg and 445 kg including payload, can be mounted on the mounting flange (axis 6). For more information on Load Diagrams, see *Load diagrams on page 28*.

Working range

The working range of axis 1 can be limited by mechanical stops.

Explosive environments

The robot must not be located or operated in an explosive environment.

1.3.2 Technical data

1.3.2 Technical data

Weight, robot

The table shows the weight of the robot.

Robot model	Weight
IRB 760	2300 kg

Note

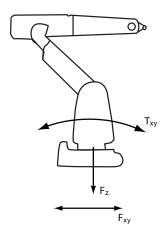
The weight does not include tools and other equipment fitted on the robot.

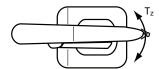
Mounting positions

The table shows valid mounting options for the manipulator.

Mounting option	Installation angle	Note
Floor mounted	0°	

Note


The actual mounting angle must always be configured in the system parameters, otherwise the performance and lifetime is affected. See the product manual for details.


1.3.2 Technical data Continued

Loads on foundation, robot

The illustration shows the directions of the robots stress forces.

The directions are valid for all floor mounted, suspended and inverted robots.

xx1100000521

F _{xy}	Force in any direction in the XY plane
Fz	Force in the Z plane
T _{xy}	Bending torque in any direction in the XY plane
T _z	Bending torque in the Z plane

The table shows the various forces and torques working on the robot during different kinds of operation.

Note

These forces and torques are extreme values that are rarely encountered during operation. The values also never reach their maximum at the same time!

WARNING

The robot installation is restricted to the mounting options given in following load table(s).

Floor mounted

Force	Endurance load (in operation)	Max. load (emergency stop)
Force xy	± 9.1 kN	± 17.7 kN
Force z	+ 26.7 ± 3.6 kN	+ 26.7 ± 7.9 kN
Torque xy	± 28.9 kNm	± 38.5 kNm
Torque z	± 6.2 kNm	± 14.2 kNm

1.3.2 Technical data Continued

Requirements, foundation

The table shows the requirements for the foundation where the weight of the installed robot is included:

Requirement	Value	Note
Flatness of foundation surface	0.3 mm	Flat foundations give better repeatability of the resolver calibration compared to original settings on delivery from ABB.
		The value for levelness aims at the circumstance of the anchoring points in the robot base.
Minimum resonance frequency	Note It may affect the manipulator lifetime to have a lower resonance frequency than recommended.	The value is recommended for optimal performance. Due to foundation stiffness, consider robot mass including equipment. i For information about compensating for foundation flexibility, see the application manual of the controller software, section <i>Motion Process Mode</i> .

The minimum resonance frequency given should be interpreted as the frequency of the robot mass/inertia, robot assumed stiff, when a foundation translational/torsional elasticity is added, i.e., the stiffness of the pedestal where the robot is mounted. The minimum resonance frequency should not be interpreted as the resonance frequency of the building, floor etc. For example, if the equivalent mass of the floor is very high, it will not affect robot movement, even if the frequency is well below the stated frequency. The robot should be mounted as rigid as possibly to the floor.

Disturbances from other machinery will affect the robot and the tool accuracy. The robot has resonance frequencies in the region 10 – 20 Hz and disturbances in this region will be amplified, although somewhat damped by the servo control. This might be a problem, depending on the

requirements from the applications. If this is a problem, the robot needs to be isolated from the environment.

Storage conditions, robot

The table shows the allowed storage conditions for the robot:

Parameter	Value
Minimum ambient temperature	-25° C
Maximum ambient temperature	+55° C
Maximum ambient temperature (less than 24 hrs)	+70° C
Maximum ambient humidity	95% at constant temperature (gaseous only)

Operating conditions, robot

The table shows the allowed operating conditions for the robot:

Parameter	Value
Minimum ambient temperature	0° C
Maximum ambient temperature	+50° C
Maximum ambient humidity	Max. 95% at constant temperature

1.3.2 Technical data Continued

Protection classes, robot

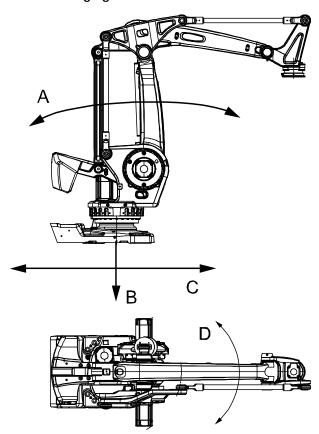
The table shows the available protection types of the robot, with the corresponding protection class.

Protection type	Protection class i
Manipulator, protection type Standard	IP 67

i According to IEC 60529.

1.3.3 Mounting the manipulator

1.3.3 Mounting the manipulator


Maximum Load

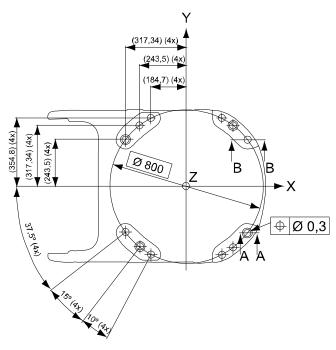
Maximum load in relation to the base coordinate system.

Floor Mounted

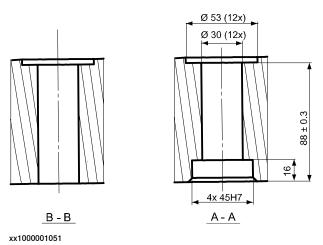
Force	Endurance load (in operation)	Max. load (emergency stop)
Force xy	± 9.1 kN	± 17.7 kN
Force z	+ 26.7 ± 3.6 kN	+ 26.7 ± 7.9 kN
Torque xy	± 28.9 kNm	± 38.5 kNm
Torque z	± 6.2 kNm	± 14.2 kNm

The following figure shows the direction of forces.

xx1000001138


Α	Torque _{xy} (T _{xy})
В	Force _z (F _z)
С	Force _{xy} (F _{xy})
D	Torque _z (T _z)

Note regarding M_{xy} and F_{xy}


The bending torque (M_{xy}) can occur in any direction in the XY-plane of the base coordinate system. The same applies to the transverse force (F_{xy}) .

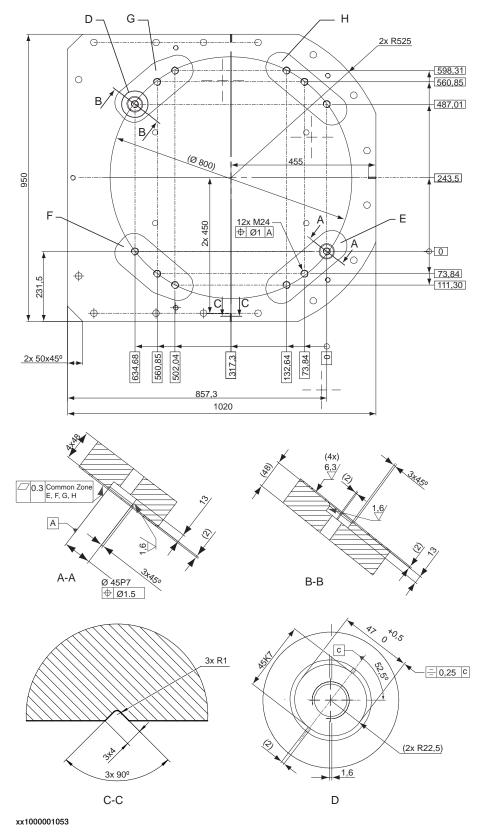
Fastening holes robot base

The following figure shows the hole configuration (dimensions in mm).

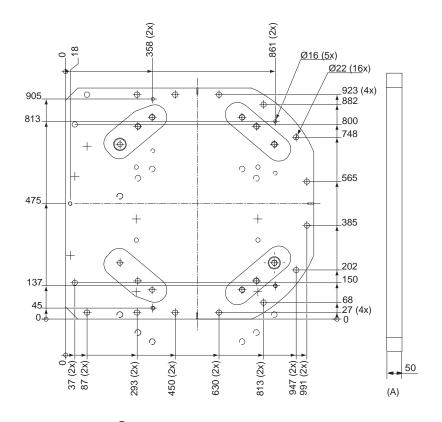
xx1000001050

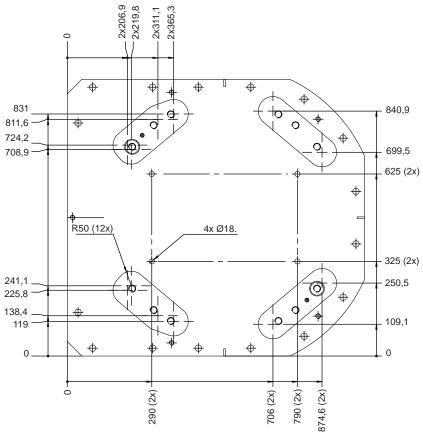
Recommended screws for fastening the manipulator to the base	M24 x 140 8.8 with 4 mm flat washer.
Torque value	725 Nm

Two guiding sleeves required, dimensions see figures in this chapter.

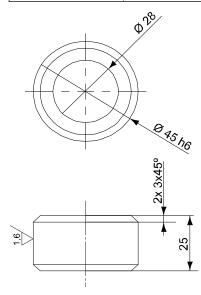


Note


Only two guiding sleeves shall be used. The corresponding holes in the base plate shall be circular and oval according to the following base plate drawing. regarding AbsAcc performance, the recommended are the chosen guide holes those are according to next two figures.


Base plate drawing

The following figure shows the option base plate (dimensions in mm).


E, F, G, H Common tolerance zone (accuracy all over the base plate from one contact surface to the other)

xx1000001054

Pos	Description
Α	Color: RAL 9005. Thickness: 80-100 μm

xx1000001055

Pos	Description
-	Guide sleeve, protected from corrosion

1.4.1 Calibration methods

1.4 Calibration

1.4.1 Calibration methods

Overview

This section specifies the different types of calibration and the calibration methods that are supplied by ABB.

More information is available in the product manual.

Types of calibration

Type of calibration	Description	Calibration method
Standard calibration	The calibrated robot is positioned at calibration position.	Axis Calibration or Calibration Pendulum ⁱ
	Standard calibration data is found on the SMB (serial measurement board) or EIB in the robot.	

The robot is calibrated by either Calibration Pendulum or Axis Calibration at factory. Always use the same calibration method as used at the factory.

Brief description of calibration methods

Calibration Pendulum method

Calibration Pendulum is a standard calibration method for calibration of some ABB robots. On OmniCore, this calibration method is only used on IRB 1510, IRB 1520, IRB 2400, and IRB 4400.

Two different routines are available for the Calibration Pendulum method:

- · Calibration Pendulum II
- · Reference calibration

The calibration equipment for Calibration Pendulum is delivered as a complete toolkit, including the *Operating manual - Calibration Pendulum*, which describes the method and the different routines further.

Axis Calibration method

Axis Calibration is a standard calibration method for calibration of IRB 760. It is the recommended method in order to achieve proper performance.

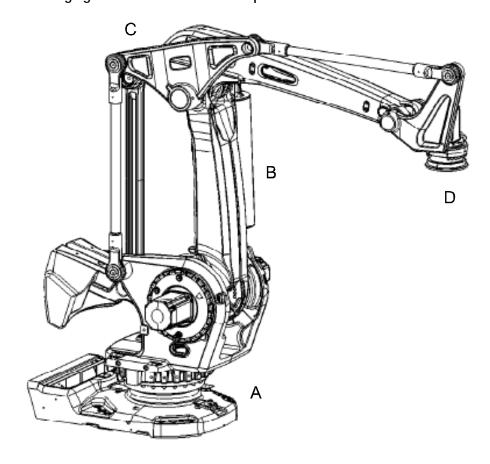
The following routines are available for the Axis Calibration method:

- · Fine calibration
- Update revolution counters
- · Reference calibration

The calibration equipment for Axis Calibration is delivered as a toolkit.

The actual instructions of how to perform the calibration procedure and what to do at each step is given on the FlexPendant. You will be guided through the calibration procedure, step by step.

Information about valid calibration method is found on the calibration label or in the calibration menu on the FlexPendant.


If no data is found related to standard calibration, contact the local ABB Service.

1.4.2 Fine calibration

General

Fine calibration is made using the Calibration Pendulum, see *Operating manual - Calibration Pendulum*.

The following figure shows all axes in zero position.

xx1000001142

Pos	Description
Α	Axis 1
В	Axis 2
С	Axis 3
D	Axis 6

Calibration	Position
Calibration of all axes	All axes are in zero position
Calibration of axis 1 and 2	Axis 1 and 2 in zero position Axis 3 to 6 in any position
Calibration of axis 1	Axis 1 in zero position Axis 2 to 6 in any position

1.5.1 Introduction to load diagrams

1.5 Load diagrams

1.5.1 Introduction to load diagrams

Information

WARNING

It is very important to always define correct actual load data and correct payload of the robot. Incorrect definitions of load data can result in overloading of the robot.

If incorrect load data is used, and/or if loads outside the load diagram are used, the following parts can be damaged due to overload:

- motors
- gearboxes
- · mechanical structure

WARNING

In RobotWare, the service routine LoadIdentify can be used to determine correct load parameters. The routine automatically defines the tool and the load.

See Operating manual - OmniCore, for detailed information.

WARNING

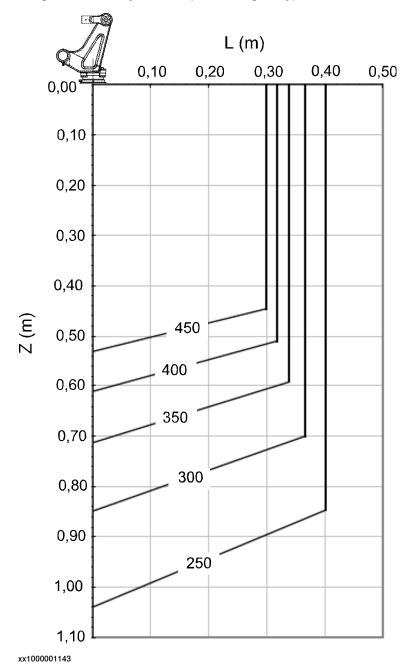
Robots running with incorrect load data and/or with loads outside the load diagram, will not be covered by robot warranty.

General

The load diagram is valid up to max moment of inertia for axis 6. No extra load on upper arm.

At different moment of inertia the load diagram will be changed. For robots that are allowed tilted, wall or inverted mounted, the load diagrams as given are valid and thus it is also possible to use RobotLoad within those tilt and axis limits.

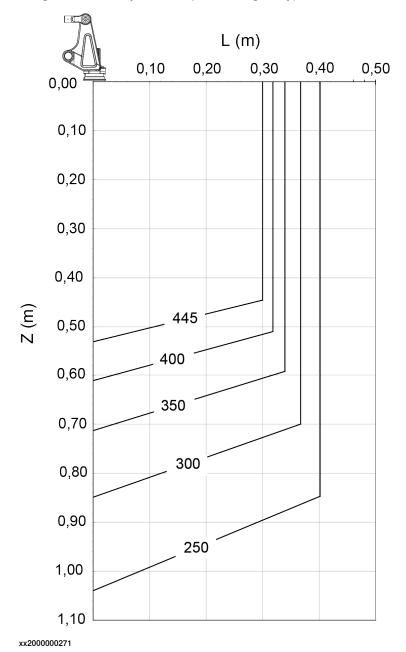
Control of load case with RobotLoad


To verify a specific load case, use the RobotStudio add-in RobotLoad.

The result from RobotLoad is only valid within the maximum loads and tilt angles. There is no warning if the maximum permitted arm load is exceeded. For over-load cases and special applications, contact ABB for further analysis.

1.5.2 Load diagrams

IRB 760-450/3.2

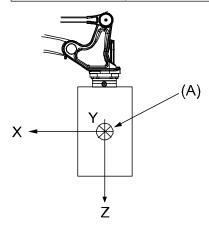

The following figure shows the maximum permitted load mounted on the robot tool flange at different positions (center of gravity).

1.5.2 Load diagrams *Continued*

IRB 760-445/3.2

The following figure shows the maximum permitted load mounted on the robot tool flange at different positions (center of gravity).

30


1.5.3 Maximum load and moment of inertia

1.5.3 Maximum load and moment of inertia

General

Load in kg, Z and L in m and J in $\mbox{kgm}^{\,2}.$

Axis	Maximum moment of inertia
6	Ja6 = Load x $L^2 + J_{0Z} \le 400 \text{ kgm}^2$

xx1000001078

Pos	Description
Α	Center of gravity

	Description	
J _{ox} , J _{oy} , J _{oz}	Max. moment of inertia around the X, Y and Z axes at center of gravity.	

1.5.4 Maximum TCP acceleration

1.5.4 Maximum TCP acceleration

General

Higher values can be reached with lower loads than the nominal because of our dynamical motion control QuickMove2. For specific values in the unique customer cycle, or for robots not listed in the table below, we recommend to use RobotStudio.

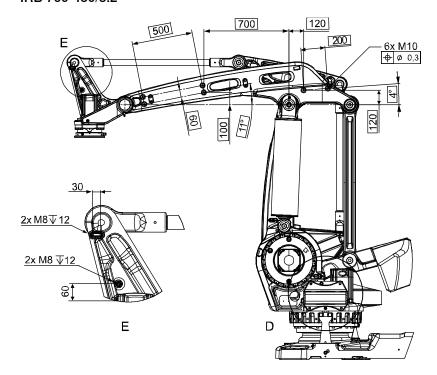
Maximum Cartesian design acceleration for nominal loads

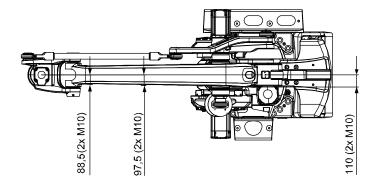
	Max acceleration at nominal load	Controlled Motion Max acceleration at nominal load COG
	COG [m/s ²]	[m/s ²]
IRB 760	23	17

Note

Acceleration levels for emergency stop and controlled motion includes acceleration due to gravitational forces. Nominal load is defined with nominal mass and cog with max offset in Z and L (see the load diagram).

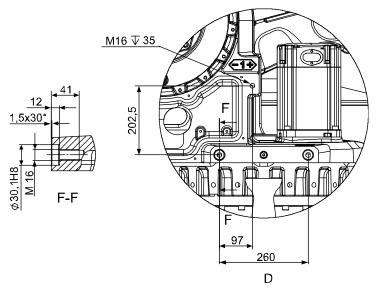
1.6 Mounting of equipment

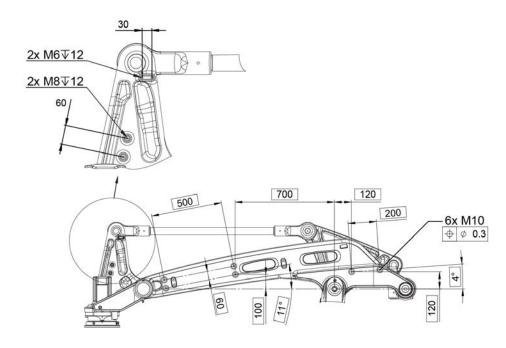

1.6.1 Introduction


General

Extra loads can be mounted on to the upper arm and on to the left side of the frame. Holes and definitions of masses are shown in figure below.

For mounting of an external vacuum hose there are six holes on the upper arm figure below. The max. weight for the vacuum hose and fastening device is 35 kg. When using the holes, the weight of the vacuum hose shall be reduced from the max. Handling capacity, for each variant respectively.

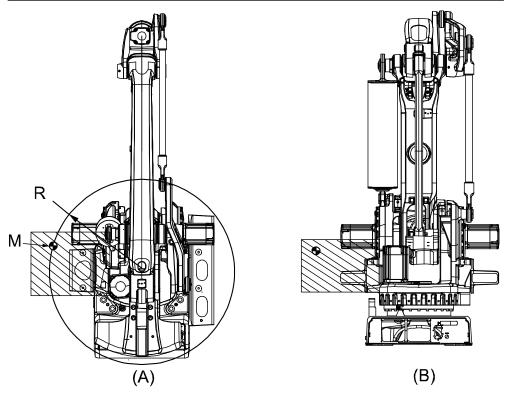

IRB 760-450/3.2


xx1000001147

1.6.1 Introduction Continued

xx1000001148

IRB 760-445/3.2

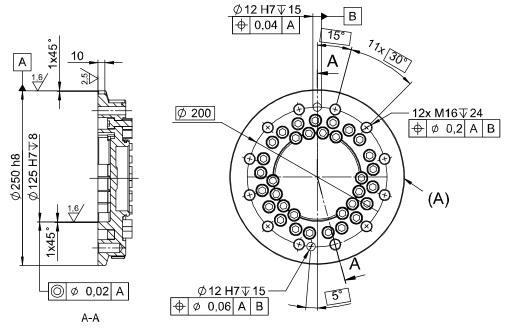


xx1900001259

Frame

For mounting of extra load on to the frame there are three holes on the left side (see previous figure). The max. weight of the extra load is 150 kg and the max. moment of inertia is 120 kgm^2 .

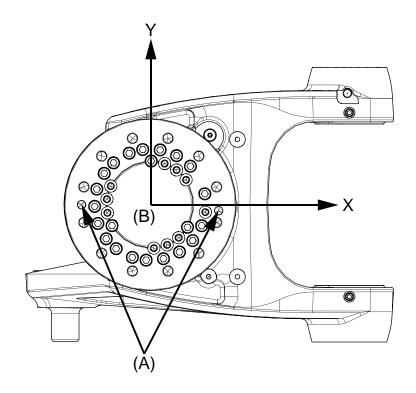
Description	Value and definition
Permitted extra load on frame	M = 150 kg
Max. moment of inertia for extra load	$J_{H} = 120 \text{ kgm}^2$
Recommended position, see figure below	$J_H = J_{H0} + M \times R^2$ J_{H0} is the moment of inertia (kgm ²) for the extra load.R is the radius (m) from the center of axis 1.M is the total mass (kg) of the extra load.


xx1000001149

Pos	Description
Α	View from above
В	View from the rear
М	Center of gravity of hip load
R	Radius to CoG of (M)

1.6.1 Introduction Continued

Robot tool flange


The following figure shows the robot tool flange SS-EN ISO 9409;2004 (dimensions in mm).

xx1000001058

Pos	Description
A	Calibration mark

1.6.1 Introduction Continued

xx1800001403

-	Tool flange in bottom view
Α	Locating hole
В	Tool coordinate system

Fastener quality

When fitting tools on the tool flange, only use screws with quality 12.9. For other equipment use suitable screws and tightening torque for your application.

1.7.1 Introduction

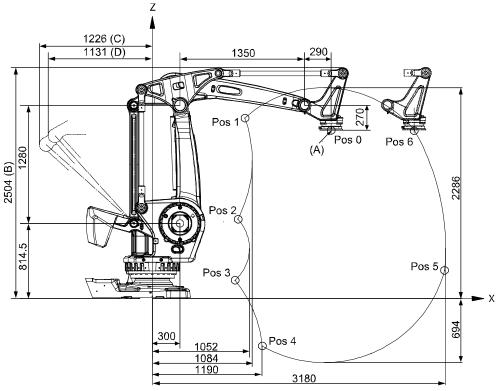
1.7 Robot motion

1.7.1 Introduction

Type of motion

The table below specifies the types and ranges of the robot motion in every axis.

Axis	Type of motion	Range of motion
1	Rotation motion	-180° to +180° Can be extended, with use of option, to: -220° to +220° (option 3324-1)
2	Arm motion	-42° to +85°
3	Arm motion	-20° to +120° IRB 760 - 445/3.2: -20° to +80°
2-3	Arm motion	20° to 160°
6	Turn motion	-300° to +300° - 67 revolutions to +67 revolutions ¹⁾

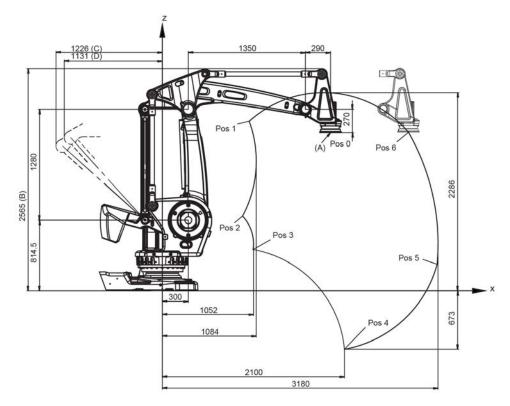

¹⁾ The default working range for axis 6 can be extended by changing parameter values in the software. Option "Independent axis" can be used for resetting the revolution counter after the axis has been rotated (no need for "rewinding" the axis).

1.7.1 Introduction Continued

Illustration

The following figure shows the extreme positions of the robot arm specified at tool flange center (dimensions in mm).

IRB 760 - 450/3.2



xx1000001151

Pos	Description
Α	Tool flange center
В	Max working range 2966 mm
С	Mechanical stop
D	Max working range

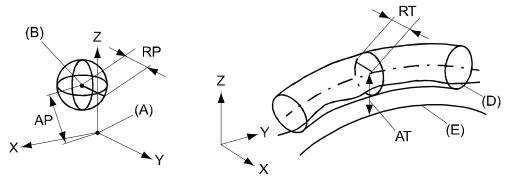
1.7.1 Introduction Continued

IRB 760 - 445/3.2

xx2000000272

Pos	Description	
Α	Tool flange center	
В	Max working range 3027 mm	
С	Mechanical stop	
D	Max working range	

Positions at wrist center


Pos no. see Figure 16	X Position (mm)	Z Position (mm)	Axis 2 Angle (degrees)	Axis 3 Angle (degrees)
0	1940	1824,5	0	0
1	1002	1957	-42	-20
2	925	862	-42	28
3	896	198	50	120
4	1190	-513	85	120
5	3169	307	85	15
6	2839	1829	50	-20

1.7.2 Performance according to ISO 9283

General

At rated maximum load, maximum offset and 1.6 m/s velocity on the inclined ISO test plane, with all six axes in motion. Values in the table below are the average result of measurements on a small number of robots. The result may differ depending on where in the working range the robot is positioning, velocity, arm configuration, from which direction the position is approached, the load direction of the arm system. Backlashes in gearboxes also affect the result.

The figures for AP, RP, AT and RT are measured according to figure below.

xx0800000424

Pos	Description	Pos	Description
Α	Programmed position	E	Programmed path
В	Mean position at program execution	D	Actual path at program execution
AP	Mean distance from pro- grammed position	AT	Max deviation from E to average path
RP	Tolerance of position B at repeated positioning	RT	Tolerance of the path at repeated program execution

Description	IRB 760-450/3.2 IRB 760-445/3.2
Pose accuracy, AP ^a (mm)	0.20
Pose repeatability, RP (mm)	0.05
Linear path repeatability, RT (mm)	0.80
Linear path accuracy, AT (mm)	3.30
Pose stabilization time, PSt (s) to within 0.5 mm of the position	0.13

a. AP according to the ISO test above, is the difference between the teached position (position manually modified in the cell) and the average position obtained during program execution.

The above values are the range of average test results from a number of robots.

1.7.3 Velocity

1.7.3 Velocity

Maximum axis speeds

Axis No.	IRB 760-450/3.2 IRB 760-445/3.2
1	85°/s
2	85°/s
3	85°/s
6	160°/s

There is a supervision function to prevent overheating in applications with intensive and frequent movements.

1.7.4 Robot stopping distances and times

1.7.4 Robot stopping distances and times

Introduction

The stopping distances and times for category 0 and category 1 stops, as required by EN ISO 10218-1 Annex B, are listed in *Product specification - Robot stopping distances according to ISO 10218-1 (3HAC048645-001)*.

1.8.1 Introduction

1.8 Customer connections

1.8.1 Introduction

General

Depending on the choice of options above the Customer connection will have different content. The choice of routing will not affect the content. See tables for signal content below.

For further information of the customer connection, see Specification of Variants and Options, Application interface Connection type.

Media & Communication, Ethernet, parallel communication and air

Туре	Application	Specification	Connection type	Supplier Art- icle No.	Comment
Functional Earth (FE)		10mm ²	M8 Cable lug		
Power (CP)	Utility power	4x0.75mm ² (5A/250VAC)	3-module Hart- ing, shell size 10B, EE	Female, EE, 8 pin9 140 083 101	1x0.75mm ² protective earth
Signals (CS)	Parallel com- munication	16x AWG24 + 10x AWG24 (50V/1A)	3-module Hart- ing, shell size 10B, HD+EE	Female, HD, 25 pin9 140 253 101	4 quad twis- ted, 5 screened pair twisted
Air (AIR)	Utility air	2x12.7 (1/2") P _{Nom} = 16 bar	Parker Push- lock,1/2" M22x1,5 Brass 24 degree seal		
Bus com- munication (BUS)	Ethernet/IP, PROFINET	4x0.4mm ²	M12, 4-poles, D-coded, male	Harting 21038821425	Ethernet CAT5e 100 Mbit ¹ .

Media & Communication, DeviceNet/Profibus, parallel communication and air

Туре	Application	Specification	Connection type	Harting Article No.	Comment
Power (CP)	Utility power	4x0.75mm ² (5A/250VAC)	3-module Harting, shell size 10B, EE	Female, EE, 8 pin9 140 083 101	1x0.75mm ² protective earth
Signals (CS)	Parallel communication	16x AWG24 + 10x AWG24 (50V/1A)	3-module Harting, shell size 10B, HD+EE	Female, HD, 25 pin9 140 253 101	4 quad twisted, 5 screened pair twisted
Bus Com- munication	Profibus	2xAWG26, Z=150 Ohm (1MHz)	3-module Harting, shell	Female, DD, 12 pin9 140 123 101	
(BUS)	CANBus	2xAWG26, Z=120 Ohm (1MHz)	size 10B, DD		
	BUS power & BUS utility	2x2 AWG24			

¹ Ethernet with wire colors according to PROFINET standard

1.8.1 Introduction Continued

Туре	Application	Specification	Connection type	Harting Article No.	Comment
Air (AIR)	Utility air	2x12.7 (1/2") P _{Nom} = 16 bar	Parker Push- lock,1/2" M22x1,5 Brass 24 de- gree seal		

1.9.1 Introduction

1.9 Maintenance and troubleshooting

1.9.1 Introduction

General

The robot requires only minimum maintenance during operation. It has been designed to make it as easy to service as possible:

- · Maintenance-free AC motors are used
- · Oil is used for the gear boxes
- The cabling is routed for longevity, and in the unlikely event of a failure, its modular design makes it easy to change

Maintenance

The maintenance intervals depend on the use of the robot, the required maintenance activities also depends on selected options. For detailed information on maintenance procedures, see Maintenance section in the Product Manual.

2.1 Introduction to variants and options

2 Specifications of variants and options

2.1 Introduction to variants and options

General

The different variants and options for the IRB 760 are described in the following sections. The same option numbers are used here as in the specification form.

The variants and options related to the robot controller are described in the product specification for the controller.

2.2 Manipulator

2.2 Manipulator

Manipulator variant

Option	Variant	Handling capacity (kg)	Reach (m)
3300-82	760-450/3.2	450	3.18
3300-83	760-445/3.2	445	3.18

Manipulator color

Option	Color	RAL code ⁱ
209-2	ABB white standard	RAL 9003
209-202	ABB Graphite White std Standard color	RAL 7035
209	RAL code should be specified (ABB non-standard colors)	

ⁱ The colors can differ depending on supplier and the material on which the paint is applied.

Note

The delivery time for painted spare parts is longer for non-standard colors.

Manipulator protection

Option	Description
3350-670	Base 67, IP67

Requirements

The option Foundry Plus 267 [3352-10] requires option Upper arm cover [3316-1].

Note

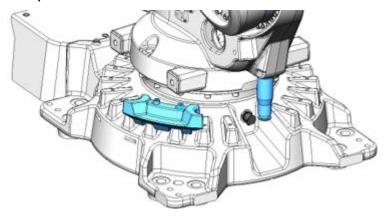
Base 67 includes IP67, according to standard IEC 60529.

Forklift device

The manipulator can be delivered with forklift devices, allowing a forklift to be used when moving the manipulator.

Option	Description	
3318-2	Forklift device on frame Fork lift pockets placed on the frame gives a more balanced lifting point. This can be used together with spe- cial tool to invert a robot.	xx2300001243

2.2 Manipulator Continued


Resolver connection 7th axis

Option	Description
3322-1	On base

Limited working range

Option	Description	
3323-1	Axis 1 adjustable 15°	
3323-3	Axis 1 adjustable 7.5°	

The manipulator can be equipped with adjustable mechanical stops. This is to mechanically limit the working range on axis 1. The mechanical stops are delivered alongside the robot (not installed). The stops can be placed in steps according to the option.

Extended working range

Option	Description	
3324-1		The option extends the working range on axis 1 from $\pm 170^{\circ}$ to $\pm 220^{\circ}$.

xx2100002595

CAUTION

The option *Extended work range* enables an extension of the working range for axis 1, through a software configuration. With this option installed, the working range can exceed the range limited by the mechanical stop on axis 1. The working range shall be limited through the option SafeMove.

A risk analysis must be done to ensure that no risks remain when using option *Extended work range*, to limit the working range, and before removing the mechanical stops.

For information about the option SafeMove, see *Application manual - Functional safety and SafeMove*.

If the mechanical stop is removed, then the manipulator should have a marking for this, for example, a label. If the robot is delivered with the option *Extended* work range, then such a label is included on delivery.

2 Specifications of variants and options

2.2 Manipulator Continued

Requirements

This option requires the option SafeMove [3043-x].

2.3 Floor cables

2.3 Floor cables

Manipulator cable length

Option	Lengths
3200-2	7 m
3200-3	15 m
3200-4	22 m
3200-5	30 m

2.4 Application manipulator

2.4 Application manipulator

DressPack base-axis 6

Option	Description	Additional information
3337-12	MH DeviceNet	Includes parallel signals
3337-13	MH EtherNet	Includes parallel signals. Supports ProfiNet, EtherNetIP
3337-14	MH CC-Link	Includes parallel signals
3337-15	MH EtherCat	Includes parallel signals

2.5 Connector kits manipulator

2.5 Connector kits manipulator

General

Below is an example of how a connector kit and its parts can look like.

xx1300000223

2.5.1 Base - Connector kits

2.5.1 Base - Connector kits

Available options

Option	Name	3337-x
3330-2	CP/CS, Proc 1 base	X

Note

Servo power connection kits are not available.

Option CP/CS, Proc 1 on base - 3330-2

R1. CP/CS and Proc 1 on base

This option offers a kit with connectors. This must be assembled by the customer. The kit contains:

- 1 Hose fittings (swivel nut adapter, (1/2", M22x1.5 Brass, 24 degree seal))
- · Connector with:

1 pcs Hood Foundry (Harting)	HAN EMC / M 40
1 pcs Hinged frame (Harting)	Shell size 16
2 pcs Multicontact, female (Harting)	Type HD (25 pin)
1 pcs Multicontact, female (Harting)	Type DD (12 pin)
1 pcs Multicontact, female (Harting)	Type EE (8 pin)
10 pcs Female crimp contacts	For 1.5 mm ²
10 pcs Female crimp contacts	For 0.5 mm ²
10 pcs Female crimp contacts	For 1.0 mm ²
10 pcs Female crimp contacts	For 2.5 mm ²
12 pcs Female crimp contacts	For 0.14 - 0.37 mm ²
45 sockets	For 0.2 - 0.56 mm ²
Assembly Accessories to complete connector	
Assembly instruction	

2.5.2 Axis 6 - Connector kits

Available options

Option	Name	3337-x	Description
3334-2	CP/CS bus axis 6	X	UTOW

Option CP/CS/CBus, Proc 1 axis 6 - 3334-2

CP/CS/CBus, Proc 1 axis 6 on tool side for option 3337-x.

This kit offers a kit with connectors to be mounted at toolside of axis 6.

This must be assembled by the customer.

The kit contains:

- 1 Hose fitting (swivel nut adapter (1/2", M22x1.5 Brass, 24 degree seal))
- · Connector with:

CP/CS	
1 pcs UTOW Pin connector 26p, bulkhead	UTOW71626PH05, Shell size 16
26 pcs Pin	RM18W3K, 0.5-0.82 mm ²
CBUS	
1 pcs UTOW Pin connector 10p, bulkhead	UTOW71210PH05, Shell size 12
10 pcs Pin	RM18W3K, 0.5-0.82 mm ²
Ethernet	
1 pcs Socket connector M12	Harting 21 03 881 2425
4 pcs Socket	Harting 09670005476, 0.13-0.33 mm ²

2.6 Application floor cables *RobotWare - OS*

2.6 Application floor cables

Ethernet cable - Length

Note

Occupies 1 Ethernet port.

Option	Description	Note
3202-2	7 m	Includes Parallel cable
3202-3	15 m	Includes Parallel cable
3202-4	22 m	Includes Parallel cable
3202-5	30 m	Includes Parallel cable

DeviceNet cable - Length

Option	Description	Note
3204-2	7 m	Includes Parallel cable
3204-3	15 m	Includes Parallel cable
3204-4	22 m	Includes Parallel cable
3204-5	30 m	Includes Parallel cable

CC-Link cable - Length

Option	Description	Note
3205-2	7 m	Includes Parallel cable
3205-3	15 m	Includes Parallel cable
3205-4	22 m	Includes Parallel cable
3205-5	30 m	Includes Parallel cable

Servo cable 1 axis - Length

Option	Description	Note
3206-2	7 m	
3206-3	15 m	
3206-4	22 m	
3206-5	30 m	

EtherCat cable - Length

Note

Occupies 1 Ethernet port.

Option	Description	Note	
3210-2	7 m	Includes Parallel cable	

2.6 Application floor cables RobotWare - OS Continued

Option	Description	Note
3210-3	15 m	Includes Parallel cable
3210-4	22 m	Includes Parallel cable
3210-5	30 m	Includes Parallel cable

2.7 Warranty

2.7 Warranty

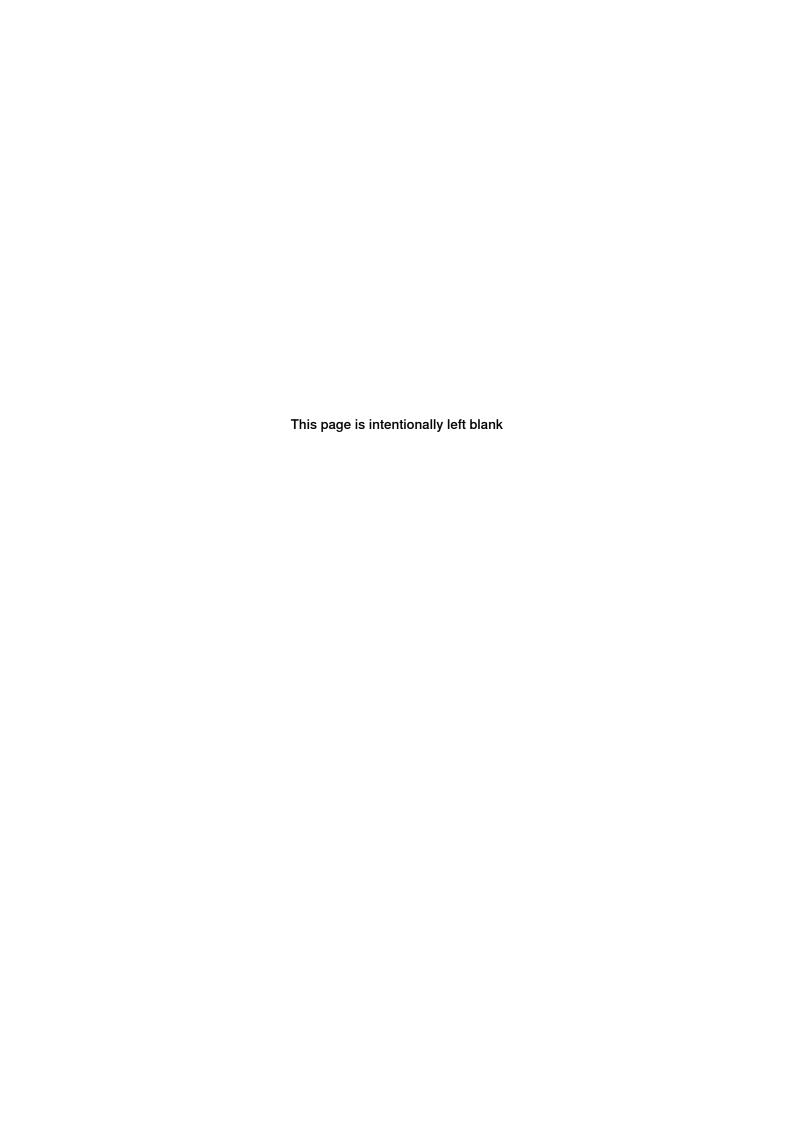
Warranty

For the selected period of time, ABB will provide spare parts and labor to repair or replace the non-conforming portion of the equipment without additional charges. During that period, it is required to have a yearly *Preventative Maintenance* according to ABB manuals to be performed by ABB. If due to customer restrains no data can be analyzed with ABB Connected Services for robots with OmniCore controllers, and ABB has to travel to site, travel expenses are not covered. The *Extended Warranty* period always starts on the day of warranty expiration. Warranty Conditions apply as defined in the *Terms & Conditions*.

Note

This description above is not applicable for option Stock warranty [438-8]

Option	Туре	Description			
438-1	Standard warranty	Standard warranty is 12 months from <i>Customer Delivery Date</i> or latest 18 months after <i>Factory Shipment Date</i> , whichever occurs first. Warranty terms and conditions apply.			
438-2	Standard warranty + 12 months	Standard warranty extended with 12 months from end date of the standard warranty. Warranty terms and conditions apply. Contact Customer Service in case of other requirements.			
438-4	Standard warranty + 18 months	Standard warranty extended with 18 months from end date of the standard warranty. Warranty terms and conditions apply. Contact Customer Service in case of other requirements.			
438-5	Standard warranty + 24 months	Standard warranty extended with 24 months from end date of the standard warranty. Warranty terms and con ditions apply. Contact Customer Service in case of othe requirements.			
438-6	Standard warranty + 6 months	Standard warranty extended with 6 months from end date of the standard warranty. Warranty terms and conditions apply.			
438-7	Standard warranty + 30 months	Standard warranty extended with 30 months from end date of the standard warranty. Warranty terms and conditions apply.			
438-8	Stock warranty	Maximum 6 months postponed start of standard warranty, starting from factory shipment date. Note that no claims will be accepted for warranties that occurred before the end of stock warranty. Standard warranty commences automatically after 6 months from Factory Shipment Date or from activation date of standard warranty in WebConfig.			
		Note			
		Special conditions are applicable, see <i>Robotics Warranty Directives</i> .			


2.7 Warranty Continued

Warranty for DressPack

Note

Option 3326-11/13 upper arm DressPack MH3 is not covered by the warranty.

Index option Extended working range, 49 options, 47 ambient humidity operation, 18 product standards, 14 storage, 18 protection classes, 19 ambient temperature protection type, 19 operation, 18 storage, 18 requirements on foundation, 18 C robot calibration protection class, 19 standard type, 26 protection types, 19 Calibration Pendulum, 27 category 0 stop, 43 S category 1 stop, 43 safety standards, 14 standards, 14 standard warranty, 58 DressPack warranty, 59 stock warranty, 58 stopping distances, 43 stopping times, 43 extended working range, 49 storage conditions, 18 Т fine calibration, 27 temperatures foundation operation, 18 requirements, 18 storage, 18 torques on foundation, 17 Н humidity operation, 18 variants, 47 storage, 18 warranty, 58 loads on foundation, 17 warranty for DressPack, 59 weight, 16 operating conditions, 18

ABB AB

Robotics & Discrete Automation S-721 68 VÄSTERÅS, Sweden Telephone +46 10-732 50 00

ABB AS

Robotics & Discrete Automation

Nordlysvegen 7, N-4340 BRYNE, Norway Box 265, N-4349 BRYNE, Norway Telephone: +47 22 87 2000

ABB Engineering (Shanghai) Ltd.

Robotics & Discrete Automation No. 4528 Kangxin Highway PuDong New District SHANGHAI 201319, China Telephone: +86 21 6105 6666

ABB Inc.

Robotics & Discrete Automation

1250 Brown Road Auburn Hills, MI 48326 USA

Telephone: +1 248 391 9000

abb.com/robotics